Observing Patterns in 4-Cycle Graphs Carissa Babcock August 2, 2017 2017 Summer Marquette MSCS REU Participant Mentor: Dr. Kim Factor #### Previous Work - In previous work, Factor, Merz, and Sano did research on competition numbers - It was discovered that 4-cycle (C₄) graphs have competition numbers that are greater than their (1,2)step competition numbers - Proposed the question if there are other graphs that hold this same pattern #### My Research - Examined patterns in C₄ U C₄ - Examined patterns of C₄ with pendants #### Importance of this Research - Useful in Biology: can be used in ecological studies (food webs); can support Biology notions - Useful in Mathematics: answers previous research question #### Competition Number A competition number (denoted γ(D)) is the smallest nonnegative integer k in a graph G in which k isolated vertices and G is the competition graph of some acyclic digraph. #### Competition Graph #### (1,2)-Step Competition Number • A (1,2)-step competition number (denoted $\gamma_{(1,2)}(D)$) is the smallest nonnegative integer k in a graph G in which k isolated vertices and G is the (1,2)-step competition graph of some acyclic digraph. #### (1,2)-Step Competition Graph #### The Need for a Competition Number ## C₄ Competition Number #### C₄ (1,2)-Step Competition Number #### What Can we Study? #### Competition Number (1,2)-step Competition Number ## Question to Consider What patterns can be observed from looking at C_4 to see if there are other graphs in which $\gamma(D) > \gamma_{(1,2)}(D)$? ## C₄ U C₄ ## C₄ U C₄ Competition Number #### C₄ U C₄ (1,2)-Step Competition Number ### C₄ U C₄ Results - It can be seen that: - $\gamma(C_4 \cup C_4) = 2$ $\gamma_{(1,2)}(C_4 \cup C_4) = 1$ ### Further Extensions of C₄ U C₄ • The pattern in which $\gamma(G) = 2$ and $\gamma_{(1,2)}(G) = 1$ continues for multiple unions of C_4 ## Further Extensions of C₄ U C₄ \bullet 8 unions of C_4 : ### Further Extensions of C₄ U C₄: Competition Number ## Further Extensions of C_4 U C_4 : (1,2)-Step Competition Number ## Further Extensions of C₄ U C₄: Results - Graph G is eight unions of C_4 : - y(G) = 2 - $\gamma_{(1,2)}(G) = 1$ - For k unions of C_4 , $\gamma(D) > \gamma_{(1,2)}(D)$ ## C₄ With Pendant ## C₄ With Pendant Competition Number ## C₄ With Pendant (1,2)-Step Competition Number ## C₄ With Pendant Results - G is a C₄ graph with one pendant: - $\gamma(G) = 2$ $\gamma_{(1,2)}(G) = 1$ #### C₄ With Pendants Future Work • Currently working on adding additional pendants and seeing if there is any pattern in $\gamma(D)$ and $\gamma_{(1,2)}(D)$ #### **Future Work** - Are there other extensions of C_4 graphs where $\gamma(D) > \gamma_{(1,2)}(D)$? - Are there other basic graph structures besides C₄ graphs where this pattern remains true? - Is there still a pattern when further extensions of pendants are used? - What patterns exist when taking unions of C₄ graphs and adding an edge between them? #### Acknowledgements - National Science Foundation - Marquette University MSCS - Dr. Kim Factor - Max Black #### References - Factor, K., Merz, S. The (1,2)-step competition graph of a tournament. Discrete Applies Mathematics. Volume 159, Issues 2-3 - Factor, K., Merz, S., Sano, Y. *The* (1,2)-step competition number of a graph. Congressus Numerantium 215, (2013) 153-161