Difference between revisions of "User:Dakota.Sullivan"

From REU@MU
Jump to: navigation, search
(Week 4)
Line 107: Line 107:
 
* Developed algorithm to import test data
 
* Developed algorithm to import test data
 
* Updated personal wiki page
 
* Updated personal wiki page
 +
 +
==== Tuesday, June 23 ====
 +
* Tested import algorithm
 +
* Met with Dr. Spiller
 +
* Searched for errors in code
 +
* Modified m(x) and v(x)

Revision as of 20:33, 23 June 2015

Personal Info

Dakota Sullivan is a Computational Mathematics and Social Welfare and Justice double major at Marquette University.

Research Topic

Using statistical surrogates to estimate the behavior of storm surge during a hurricane or tropical storm. See here for more details.

Milestones

Weekly milestones can be found on our main project page, located here.

Daily Log

Week 1 (6/1 - 6/5)

Monday, June 1

  • Attended introductory session; learned about REU program
  • Met with Dr. Spiller and research group members
  • Attended Systems lab orientation with Dr. Dennis Brylow
  • Took pre-REU NSF survey
  • Began introductory reading on Gaussian Stochastic Process

Tuesday, June 2

  • Toured campus
  • Filed paperwork with HR
  • Attended library resources orientation with Heather James
  • Met with Dr. Spiller

Wednesday, June 3

  • Installed Python
  • Met with Dr. Spiller to review Gaussian Stochastic Process
  • Met with Dr. Brylow to learn about Marquette email and time keeping
  • Tested optimization routines in Python

Thursday, June 4

  • Determined routine for plotting in Python
  • Attended talk by Dr. Factor
  • Met with Dr. Spiller
  • Determined research goals and project timeline
  • Continued developing optimization routine and plotting algorithms

Friday, June 5

  • Met with research group to finalize optimization algorithm
  • Reviewed objectives of project
  • Documented Goals and Milestones
  • Downloaded LaTex

Week 2 (6/5 - 6/12)

Monday, June 8

  • Met with Dr. Spiller
  • Created methods to begin modeling maximum likelihood equation
  • Developed a plot of our approximation in Python

Tuesday, June 9

  • Created maximum likelihood function
  • Worked through difficulties with singularity in our matrices
  • Plotted approximation of theta optimization

Wednesday, June 10

  • Corrected errors in the maximum likelihood function
  • Determined optimal theta value
  • Modified maximum likelihood equation to optimize multiple variables

Thursday, June 11

  • Developed variance function
  • Listened to sample presentation by Dr. Factor
  • Met with Dr. Spiller, updated her on our progress and discussed paper by Westerink et al.

Friday, June 12

  • Modified code to account for all approximated variables
  • Tested our approximation methods for other functions
  • Began reading Westerink et al.

Week 3

Monday, June 15

  • Read through research paper (Westerink et al.)

Tuesday, June 16

  • Met with Dr. Spiller
  • Introduced to additional notes on GaSP
  • Attended talk by Dr. Brylow

Wednesday, June 17

  • Compared previous and new maximum likelihood equations
  • Began developing a least squares model for our approximation
  • Met with Dr. Spiller to discuss new maximum likelihood equation

Thursday, June 18

  • Completed Responsible Conduct of Research (RCR) training
  • Began implementing new maximum likelihood equation
  • Integrated least squares model into maximum into approximation

Friday, June 19

  • Finalized implementation of least squares model
  • Tested approximation with multiple functions and inputs
  • Added reference prior to maximum likelihood equation
  • Met with Dr. Spiller
  • Watched RCR training videos

Week 4

Monday, June 22

  • Modified approximation function to allow multiple dimensions
  • Developed algorithm to import test data
  • Updated personal wiki page

Tuesday, June 23

  • Tested import algorithm
  • Met with Dr. Spiller
  • Searched for errors in code
  • Modified m(x) and v(x)